您的位置:4166.com > 仪器仪表 > 流量计的性能比较

流量计的性能比较

2019-11-17 13:41

在封闭管道液体流量测量过程中,根据测量体积流量的流量计的确定性可分为两类:容积式流量计和推理式流量计。 1.容积式流量计 容积式流量计,是精度高的一种总量计量仪表。按其测量元件又可分为螺旋转子流量计、刮板流量计、椭圆齿轮流量计、圆盘流量计、旋转活塞流量计、液封转筒式流量计等,其主要特点如下。优点:测量准确度高;可用于高黏度液体的测量,适合于洁净单相流体;直读式仪表无需外部能源便可直接获得累积总流量;安装方便,对前后直管段无特殊要求。缺点:不适合于高、低温场合;被测介质种类、口径局限性较大;压力损失较大;需定期校准。应用:容积式流量计凭借其高准确度的计量特性,在能源、石油、医药、食品、化工等领域被广泛应用,尤其在测量原油等液体介质时,需要对储运、交接和分发等进行计量,并转财务核算的依据或者转纳税的买卖双方执行合同的法定计量。2.差压式流量计 差压式流量计是各类流量仪表中使用较多的一种,按检测件可分为孔板流量计、文丘里流量计、均速管流量计等,其主要特点如下。优点:应用范围广,可测量全部单相流体,部分混相流体;结构简单牢固、维护方便、使用寿命长;检测件与变送器、显示仪表由不同厂家生产,便于规模经济生产。缺点:测量精度一般;压力损失大;安装条件要求高,其前后必须有足够长的直管道。应用:转早的测量方式,在封闭管道的流量测量中,差压式流量计对各种条件下的对象都可应用,该种流量计使用量约占全部流量计用量的1/4~1/3。3.科里奥利质量流量计 科里奥利质量流量计在国内应用起步较晚,但其可以直接测量管道内流体的质量流量,其主要特点如下。优点:测量精度较高;测量流体范围广泛,包括含有微量气体的液体;安装对上下游直管段无要求。缺点:不能对低密度介质和低压气体进行测量,液体中含气量超过某一限制会影响测量精度;对外界振动干扰敏感,为防止管道振动影响,多数对传感器安装固定要求较高;管道口径受限,不能用于较大管径;测量管道内结垢或内壁磨损都会影响测量精度;压力损失较大。应用。科里奥利质量流量计特别适合于黏度较大的介质,由于其精度和稳定度较高,因此,发达国家在化工、制药、石油、能源、食品等工业领域已大量使用该种流量计,在运输部门常用于流体管道输送的计量。4.超声波流量计 超声波流量计大体可分为插入式、管段式、外夹式和便携式等,其主要特点如下。优点:非接触式测量,适合于大口径、大流量测量;无压力损失,不干扰流体;适合于任何液体;安装维护方便。缺点:被测液体中含有气泡或有杂音时,会影响测量精度;可测流体的温度范围受超声波换能器及换能器与管道之间的耦合材料耐温程度的限制,高温下被测流体传声速度的原始数据不全。应用。超声波流量计在石油、化工、冶金、电力等领域被广泛应用,常被用在工厂排放液、脏流程液等流量测量,以及作业区的西气东输的管线上计量。5.电磁流量计 20世纪70、80年代,电磁流量在技术上有重大突破,使得该流量计的使用数量不断上升,其主要特点如下。优点:适用于测量含固体颗粒的液固二相流体;无压力损失;不受流体特性影响。缺点:不能测量电导率较低的液体,如石油制品和有机溶剂等;不能用于较高温度的液体测量;不能测量气体、蒸汽和含有较多较大气泡的液体。应用。电磁流量计中大口径仪表常被用于给排水工程;中小口径仪表常用于高要求或难测量场合,如化学工业的强腐蚀液,造纸工业测量纸浆液和黑液;小口径、微小口径常用于医药工业、食品工业、生物化学工业等领域。6.涡轮流量计 涡轮流量计的产品现已发展为多品种、多系列批量生产的规模,其主要特点如下。优点:精度高,测量液体时一般为±0.25%R~±0.5%R,甚至可达±0.15%R;重复性好,短期重复性可达0.05%R~0.2%R;无零点漂移,抗干扰能力强。缺点:流体物性对流量特性有较大影响;不能长期保持校准特性。应用。涡轮流量计常被用于测量石油、有机液体、无机液和低温流体等,在国外成品油、轻质原油等的转运及集输站,大型原油输送管线的首末站都用其进行贸易结算。7.涡街流量计 涡街流量计是流量计中新的一种,但其发展迅速,目前已成为通用的一类,其主要特点如下。优点:应用范围广,可适用液体、气体和蒸汽等流量测量;压力损失较小;安装方便,结构简单牢固。缺点:抗干扰能力差;安装要求前后是直管段;在脉动流、多相流中尚缺乏应用经验。应用。涡街流量计的应用范围非常广泛,常用于工厂供水系统中,在高黏度、低流速、小口径情况下的应用会受到限制。二、流量计选择的一般准则 为了正确地选择流量计,首先必须对每个类型的流量计的测量原理、结构、性能等有基本了解,然后再结合具体的测量条件,综合考虑测量的准确性、经济性等因素后,确定流量计的型式与规格。1.选择流量计的一般准则确定被测流体的特性。明确被测流体是何种介质,即要了解被测流体是液体、气体还是蒸汽;被测流体的性质,如流速、密度、黏度、腐蚀性与压缩率等;被测介质正常工作时的温度、压力及其高低变化范围;被测流体的流量范围,包括小流量、常用流量、大流量;流体的流动状态是层流还是紊流;是否有脉动;以及流体流动时是否处于满管状态等,这些因素都会直接影响流量计的选型。确定流量测量的技术要求。明确流量仪表的准确度,即确定对被测流体的准确度要求;流量测量的重复性,即在一定的条件下,多次反复测量同一量所测得的数值是否相同;流量测量结果的表示方式,是质量流量还是体积流量,是瞬时流量还是累积流量;流量仪表的信号输出方式,是否需要带有远程传输功能;流量测量结果的显示方式,是机械表头还是电子表头等。若流量仪表与被测流体的技术要求不匹配,也会导致测量的误差。确定流量计的安装条件。流量仪表测量对象一般以管道液体为主,因此一般要将流量计安装在管道上进行测量,那么在选择流量计以前,就必须要了解现场工况,确定是否需要防爆型的流量仪表;仪表的安装方式,是在管道外还是在封闭的管道内,是否需要断管;若断管,工艺管道是否有振动以及环境温度和湿度条件等,尽量选择永久压力损失小、安装维护方便的流量计。确定运行的经济性。流量计结构的不同,其价格和压力损失也不同,综合考虑,价格属于一次性投资,但若压力损失选择不当,那么流量计长期运行中会使流体流动动能损失巨大,造成能源浪费。总之,选择流量计时要综合考虑以上因素,才能做到既满足技术要求又经济合理。流量计选型的参考思路如图1所示。

一、电磁流量计1、优点电磁流量计可用来测量工业导电液体或浆液。无压力损失。测量范围大,电磁流量变送器的口径从2.5mm到2.6m。电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。2、缺点电磁流量计的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件下其衬里需考虑。电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。电磁流量计的安装与调试比其它流量计复杂,且要求更严格。变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。安装地点不能有振动,不能有强磁场。在安装时必须使变送器和管道有良好的接触及良好的接地。变送器的电位与被测流体等电位。在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约2%附加误差。变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。但改进的仪表结构复杂,成本较高。 二、超声波流量计1、优点超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。它不会改变流体的流动状态,不会产生压力损失,且便于安装。可以测量强腐蚀性介质和非导电介质的流量。 超声波流量计的测量范围宽,测量口径范围从2cm~5m.超声波流量计可以测量各种液体和污水流量。超声波流量计测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。可以做成固定式和便携式两种形式。2、缺点超声波流量计的温度测量范围不高,一般只能测量温度低于200℃ 的流体。抗干扰能力差。易受气泡、结垢、泵及其它声源混入的超声杂音干扰、影响测量精度。直管段要求严格,为前20D,后5D。否则离散性差,测量精度差。安装的不确定性,会给流量测量带来较大误差。测量管道因结垢,会严重影响测量准确度,带来显著的测量误差,甚至在严重时仪表无流量显示。可靠性、精度等级不高(一般为1.5~2.5级左右),重复性差。超声波流量计是通过测量流体速度再乘以管道内截面积来确定流量。而该流量计无法直接测量内径和管道圆度,只能根据外径、壁厚按标准圆估算截面积,由此带来的不确定性已超过1%,因此精度受到限制。使用寿命短(一般精度只能保证二年)。三、涡街流量计1、优点涡街流量计无可动部件,测量元件结构简单,性能可靠,使用寿命长。涡街流量计测量范围宽。量程比一般能达到1:10。涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。一般不需要单独标定。它可以测量液体、气体或蒸汽的流量。它造成的压力损失小。准确度较高,重复性为0.5%,且维护量小。2、缺点涡街流量计工作状态下的体积流量不受被测流体温度、压力、密度等热工参数的影响,但液体或蒸汽的最终测量结果应是质量流量,对于气体,最终测量结果应是标准体积流量。质量流量或标准体积流量都必须通过流体密度进行换算,必须考虑流体工况变化引起的流体密度变化。造成流量测量误差的因素主要有:管道流速不均造成的测量误差;不能准确确定流体工况变化时的介质密度;将湿饱和蒸汽假设成干饱和蒸汽进行测量。这些误差如果不加以限制或消除,涡街流量计的总测量误差会很大。抗振性能差。外来振动会使涡街流量计产生测量误差,甚至不能正常工作。通道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。大管径影响更为明显。对测量脏污介质适应性差。涡街流量计的发生体极易被介质脏污或被污物缠绕,改变几何体尺寸,对测量精度造成极大影响。直管段要求高。专家指出,涡街流量计直管段一定要保证前40D后20D,才能满足测量要求。耐温性能差。涡街流量计一般只能测量300℃以下介质的流体流量。

本文由4166.com发布于仪器仪表,转载请注明出处:流量计的性能比较

关键词: